

Next-Gen Mastitis Management with Precision Dairy Technology

Jeffrey Bewley, PhD, PAS Analytics and Innovation Scientist Holstein USA, Inc.

WKU SmartHolstein Lab

VISUAL DETECTION AND TREATMENT

FORESTRIPPING

CMT

- Cowside
- Cheap
- Easy
- Simple
- Detects relative cell content
- Does NOT give SCC

COWSIDETESTS

DHI SCC MONITORING

Mid-S	outh Dair	ry Reco	rds	*	****	•* H	IOT SH	HEET **	****	Page	e 1	
		41 sa	mples		colle	ected	4-28	8-10	test	ted 5-03	-10	
Index	Barn	Milk	Fat	Pro	SNF	MUN	SCC	Count	DIM	Lac CAR	B#	
Avg	41 cows	59.8	3.9	3.3	9.0		3.6		140			
Highe	st 20 SCC	Cows						Weighted	Aver	age SCC:	492	
Index	Barn	Milk	Fat	Pro	SNF	MUN	SCC	Count	DIM	Lac CAR	W/0	%
7	7SWISS	42.1	4.7	4.0	8.8		9.2	7352	12	1	373	25.6
56	56	30.2	5.3	4.6	8.3		9.0	6400	180	3	297	15.9
54	TESSY	81.5	3.6	3.2	8.7		6.9	1493	12	2	254	10.1
302	GLITTER	83.1	3.3	3.0	8.2		6.3	985	47	3	226	6.8
14	IZZIE	62.7	3.6	3.3	9.1		6.5	1131	145	5	200	5.9
457	NIKKI	81.4	3.2	2.9	8.1		5.9	746	34	2	179	5.0
554	AIDA	44.8	4.3	3.4	9.2		6.3	985	150	1	161	3.7
289	WHITCHA	61.7	3.2	3.2	9.0		5.4	528	308	4	149	2.7
68	5639556	85.1	4.0	3.0	8.8		4.9	373	15	1	139	2.6
17	M17	47.2	2.9	3.0	8.8		5.6	606	41	1	127	2.4
608	ELIZABE	36.1	4.1	3.2	8.9		5.8	696	107	2	116	2.1
47	PEYTON	68.2	4.8	3.3	9.0		4.8	348	117	6	106	2.0
35	SQUIRRE	58.0	3.8	3.4	9.3		4.7	325	50	1	99	1.6
119	BGEORGE	66.2	3.0	3.1	8.7		4.4	264	162	2	92	1.4
113	BETH	72.4	3.4	3.4	9.0		4.1	214	316	3	86	1.3
4	GRACEFU	56.9	6.0	3.7	9.3		4.4	264	204	4	80	1.2
285	ANN	60.5	4.2	3.7	9.2		4.3	246	210	4	72	1.2
42	42	76.0	3.6	3.3	9.1		3.7	162	28	1	67	1.0
86	86	65.3	2.4	3.1	8.9		3.9	187	26	1	61	1.0
282	WITCHIE	68.1	3.9	3.1	8.6		3.7	162	137	3	55	0.9

A ROAD PAVED WITH TECHNOLOGY

Rapid, continuous

measurements

WHITE REVOLUTION

DETECTION NEEDS VERY DIFFERENT

FOUR DIFFERENT SCENARIOS

- Cows with severe clinical mastitis needing immediate attention
- Cows with subclinical mastitis, mild or mild, or moderate clinical mastitis not needing immediate attention
- Cows needing attention at drying off
- Monitoring of udder health at the herd level

J. Dairy Sci. 104:11317–11332 https://doi.org/10.3168/jds.2020-19097

© 2021, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association[®]. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Novel ways to use sensor data to improve mastitis management

Henk Hogeveen,¹*† ◎ Ilka C. Klaas,²† ◎ Gunnar Dalen,³† ◎ Hen Honig,⁴† Alfonso Zecconi,⁵† ◎ David F. Kelton,⁶† ◎ and Maria Sánchez Mainar⁷† ◎

¹Wageningen University and Research, Business Economics group, Hollandseweg 1, 6706 KN Wageningen, the Netherlands
²DeLaval International AB, Gustaf De Lavals väg 15, 147 21 Tumba, Sweden
³TINE SA, N-1430 Ås, Norway
⁴Agricultural Research Organization, Volcani Center, 7528809 Rishon Leziyyon, Israel
⁶University of Milan, Department of Biomedical, Surgical and Dental Sciences – One Health Unit, Via Pascal 36, 20133 Milan, Italy
⁶University of Guelph, Department of Population Medicine, Guelph, ON N1G 2W1. Canada

⁷International Dairy Federation, 70/B Boulevard Auguste Reyers, 1030 Brussels, Belgium

MASTITIS DETECTION BENEFITS

MASTITIS DETECTION PLUS CULTURING MAGNIFIES VALUE

DRYING OFF

- Abrupt cessation is US industry norm
- Milk leakage and discomfort are concern
- Increase risk of IMI Primiparous animals show reduced risk of IMI with gradual cessation
- Role in tailoring drying off approach
- Selective dry cow therapy

Dairy Farm Tech 2.0

This poster tracks companies developing and deploying 21st Century technology advancements for use in handling, milking or managing cows or youngstock on dairy farms globally. Technologies that offer solutions for use in farming applications or in the dairy supply chain are not included. Manure-handling technologies are not part of the scope of this project. However, technologies for the management of enteric methane and a farm's carbon footprint are included.

Companies displayed on the map are startups or may be partially / fully owned by other companies. Companies owning or investing in these new technology brands may also be included. Companies that solely distribute technology owned by others are not included.

Disclaimer: This poster is meant to be inclusive. If you feel your technology company has been inadvertently left off or inaccurately categorized, please email the poster's creators to be added to future versions. Follow linkedin.com/groups/12742633 for updates.

WKU SmartHolstein Lab Daily Data

	75.8	83.8	5:52		138 _{steps/hr}	10:26 rest time hr/d	9.7 rest bouts/d	
Production	lbs milk	energy-corrected milk	milking time min:ss	Behavior	3:06 eating time hr/d	4:05 active time hr/d	8:01	
	4.3 fat %	3.3 protein %	4.4 lactose %	${\color{black}{\smile}}$	4:36 time at feedbunk hr/d	5:48 standing time hr/d	1:54 time out of pen hr/d	
	9.2	177,000 test day SCC cells/ml	102.5		87.2 cow comfort index			
Environment	58.8	0.1 rain (in.)	1.1 ammonia (ppm)	Nutrition	1.1 deliveries/day	7.4 pushups/day	0.9 cleanouts/day	
	0.6 methane (ppm)	21.1 TVOC (ppm)	225.2 light (lux)		4:03 low feed hr/d	6.2		

Wearable Sensors

First health microchip optimized for dairy

Real-time measurement without blood extraction

- Progesterone for Fertility
- BUN, BHB and NEFA for energy status
- Body temperature

With a smart ear tag monitoring

- Lameness
- Movement
- Behaviour

And API data integration from other technologies

Quantify the impact of your interventions and make data-driven decisions

- · Keep a centralized record of changes and events
- Understand the impact of changes you make
- Make better decisions for your herd and operations

Al-powered Copilot automates data analysis and sends key insights to your inbox

- Save time spent browsing through data
- Get a weekly summary of key changes and outliers
- Identify hard-to-spot issues with advanced AI

Machine Vision Technologies

Missed Post Dip Event

Phone Time

facility	Last update / today 05:12 pm						🕚 Update 🕑 Activity Log			
lacinty	-\	-\ O	_√		-	<i>6</i> 5		7:		
Dashboard	UNHEALTHY	WARNIN	G HEALTH	Y	UNREFERENC	ED UNLINK	ED	OFFLINE		
Pulsation	00	00	06		00	00		00		
Facility setup										
	6 stalls									
	٩									
	System vac	uum								
	milc-pulse- System va (?) Syste	3H5D cuum m vacuum	Current Level		Min. 0	Max. 0		Deviations 0		
	Stall 1									
		Milking Pai Milking Parlor	rlor Pulsator 1					~		
Discover									_	
Monitor		milc-pu	Ilse-J499							
Pipeline		Last Reading		Front	Phases 🖉	Vac. Level 📿	СРМ	Ratio	0	
Production		toda	ay 05:03 pm	Back	Phases 📀	Vac. Level 📀	CPM (Ratio	0	
Tank	Stall 2								_	

CPM Min Max 800ms Phase A 1 236.2 13.0 13.0 sample5: 6ms 600mssample4: 9ms 2 260.9 13.0 13.0 sample3: 6ms 3 287.1 13.0 13.0 400ms--sample2: 6ms 4 73.8 13.0 13.0 sample1: 6ms 200ms-5 147.8 13.0 13.0 0ms-A В С D

8

Inline Somatic Cell Count

GEA'S DAIRYMILK M6850

- First somatic cell count system focus on each udder quarter individually
- Works with DairyRobot R9500, former Monobox or DairyProQ
- Uses Electrical Permittivity Threshold (EPT) technology, a patented, physical method to measure somatic cell counts in milk, with no resources or reagents

SomaDetect

- Light scattering, absorption and fluorescence to simultaneously determine milk composition
- In-line and handheld devices

ELECTRICAL CONDUCTIVITY

- Ion concentration of milk changes, increasing electrical conductivity
- Inexpensive and simple equipment
- Wide range of sensitivity and specificity reported
- Results improve with quarter level sensors
- Improved results with recent algorithms
- Most useful combined with other metrics

MILK COLOR

Color variation (red, blue, and green) sensors in some automatic milking systems

Reddish color indicates blood (Ordolff, 2003)

Clinical mastitis may change color patterns for three colors (red, green and blue)

Specificity may be limited

THE POWER WITHIN

Core body temperature monitoring has promise as a mastitis detection tool.

BY KIM SCHOONMAKER

Thermo-Tracker TM

With CT Logic[™] Identifies sick cows for early treatment!

Milk Temperature Monitor

Temperature

- Not all cases of mastitis result in a temperature response
- Best location to collect temperature?
- Noise from other physiological impacts

The use of a radiotelemetric ruminal bolus to detect body temperature changes in lactating dairy cattle

O. AlZahal,* H. AlZahal,* M. A. Steele,* M. Van Schaik,* I. Kyriazakis,† T. F. Duffield,‡ and B. W. McBride*1

*Department of Animal and Poultry Science, and

‡Department of Population Medicine, University of Guelph, Guelph, N1G 2W1, Canada

†School of Agriculture, Food, and Rural Development, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK

Figure 1. Twenty-four-hour recording of vaginal temperature during d 21 of cows received intramammary injection of LPS (black marker) or saline (gray marker). Each point (n = 16) represents average vaginal temperature recorded during a given minute. The error bars represent standard deviation. Lipopolysaccharide or saline injections were administered at 0900 h, as depicted by the arrow.

J. Dairy Sci. 106:1360-1369 https://doi.org/10.3168/jds.2022-22421

© 2023, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association[®]. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Evaluation of reticuloruminal temperature for the prediction of clinical mastitis in dairy cows challenged with *Streptococcus uberis*

Zelmar Rodriguez,^{1*} ^(a) Quinn K. Kolar,² ^(b) Kirby C. Krogstad,² ^(b) Turner H. Swartz,² ^(c) Ilkyu Yoon,³ ^(c) Barry J. Bradford,² ^(c) and Pamela L. Ruegg¹ ^(c)

¹Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824 ²Department of Animal Science, Michigan State University, East Lansing 48824 ³Diamond V, Cedar Rapids, IA 52404

Figure 3. Frequency of health-related alerts based on the time of intramammary challenge. Day 0 represents the day of the intramammary challenge with *Streptococcus uberis*. During the week before the challenge, 13.6% of the alerts were recorded, whereas 86.4% were recorded after the challenge.

Evaluation of reticuloruminal temperature for the prediction of clinical mastitis in dairy cows challenged with Streptococcus uberis

Zelmar Rodriguez,1* O Quinn K. Kolar,2 Kirby C. Krogstad,2 Turner H. Swartz,2 Ilkyu Yoon,3 C

Barry J. Bradford,² and Pamela L. Ruegg¹ ¹Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824 ²Department of Animal Science, Michigan State University, East Lansing 48824 ³Diamond V, Cedar Rapids, IA 52404

CM severity score	Test characteristic	Ability to predict CM at least 24 h before onset of clinical signs, % (95% CI)
Mild	Se^2	90.9 (58.7, 99.8)
(severity 1)	Sp^3	90.9 (58.7, 99.8)
	PPV^4	90.9 (58.7, 99.8)
	NPV^5	90.9 (58.7, 99.8)
	Accuracy ⁶	90.9 (70.8, 98.9)
Moderate	Se	77.8 (57.7, 91.4)
(severity 2)	Sp	92.6 (75.7, 99.1)
x v /	PPV	91.3 (72.0, 98.9)
	NPV	80.6 (62.5, 92.5)
	Accuracy	85.2 (72.9, 93.4)
Severe	Se	100 (59.0, 100)
(severity 3)	Sp	85.7 (42.1, 99.6)
	PPV	87.5 (47.3, 99.7)
	NPV	100 (54.1, 100)
	Accuracy	92.9 (66.1, 99.8)

Table 1. Performance of the reticuloruminal temperature (RRT) alerts to predict clinical mastitis (CM) in cows challenged with Streptococcus uberis¹

¹Based on severity score at least 24 h before the occurrence of clinical signs of a given severity in 37 Holstein dairy cows.

²Se = sensitivity; correct prediction of a CM status based on a generated RRT alert.

³Sp = specificity: correct prediction of a CM absence status based on the lack of an RRT alert.

⁴PPV = positive predictive value: probability that, given an RRT alert, the cow will develop CM of a given severity.

⁵NPV = negative predictive value: probability that, given a lack of an RRT alert, the cow will not develop CM of a given severity.

⁶Accuracy includes 22 observations for mild severity, 54 for moderate, and 14 for severe severity.

ADVANCED IMAGING & MACHINE LEARNING

We automate mastitis detection without touching the cow or milk.

- Camera installed on rotary parlor
- Infrared image analysis at every milking
- In-barn, "edge", data processing
- Real-time signal to workers
- Integrates with other farm software systems

Thu 8:43 AM (+34.5s)

Thu 8:43 AM (+34.5s)

Thermography

May be limited because not all cases of mastitis result in a temperature response

Difficulties in collecting images

Before Infection

After Infection

Animal 16 (2022) 100646

Accurate detection of dairy cow mastitis with deep learning technology: a new and comprehensive detection method based on infrared thermal images

Y. Wang^{a,b}, X. Kang^c, Z. He^{a,b}, Y. Feng^{a,b}, G. Liu^{a,b,*}

(f)

^a Key Lab of Smart Agriculture Systems, Ministry of Education, Ministry of Education, China Agricultural University, Beijing 100083, PR China ^b Key Lab of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs of China, China Agricultural University, Beijing 100083, PR China ^c School of Computing and Data Engineering, NingboTech University, Ningbo 315200, Zhejiang, PR China

(e)

(d)

Table 2

Detection results of three methods for 105 Holstein cows mastitis.

Detection method	Specificity (%)	Sensitivity (%)	Accuracy (%)
Left and right USST difference method	97.44	33.33	80.95
OST and USST difference method	58.97	96.30	68.57
New and comprehensive method	84.62	96.30	87.62

Abbreviations: USST = udder skin surface temperature; OST = ocular surface temperature.

Spectroscopy

- Visible, near-infrared, midinfrared, or radio frequency
- Indirect identification through changes in milk composition
- AfiLab uses near infrared
 - Fat, protein, lactose

Day relative to clinical mastitis

Steele and Petersson-Wolfe, unpublished

J. Dairy Sci. 102:11233–11249 https://doi.org/10.3168/jds.2019-16549 © American Dairy Science Association[®], 2019.

The effect of J5 bacterins on clinical, behavioral, and antibody response following an *Escherichia coli* intramammary challenge in dairy cows at peak lactation

N. M. Steele,^{1,2}* ^(o) T. H. Swartz,¹ ^(o) K. M. Enger,³ H. Schramm,⁴ R. R. Cockrum,¹ ^(o) S. J. Lacy-Hulbert,² ^(o)

R. R. White,⁵ J. Hogan,³ and C. S. Petersson-Wolfe¹

¹Department of Dairy Science, Virginia Tech, Blacksburg 24061

²DairyNZ Ltd., Private Bag 3221, Hamilton 3240, New Zealand

³Department of Animal Sciences, The Ohio State University, Wooster 44691

⁴Virginia–Maryland Regional College of Veterinary Medicine, Blacksburg 24061

⁵Department of Animal and Poultry Science, Virginia Tech, Blacksburg 24061

Figure 3. Least squares means (\pm SEM) of the percent of pre-challenge yields (kg) for milk yield, milk fat, milk protein, and milk lactose in the 60 d following an intramammary challenge with *Escherichia coli*. No significant differences were found between treatments (P > 0.05).

Lab on a Chip

Biosensors and Chemical Sensors

- Biological components (enzymes, antibodies, or microorganism)
- Enzyme, L-Lactate dehydrogenase (LDH), is released because of the immune response and changes in cellular membrane chemistry
- Chemical sensors: changes in chloride, potassium, and sodium ions, volatile metabolites resulting from mastitis, haptoglobin, and hemoglobin (Hogeveen, 2011)

Herd Navigator

- Progesterone
 - Heat detection
 - Pregnancy detection
- LDH enzyme
 - Early mastitis detection
- BHBA
 - Indicator of subclinical ketosis
- Urea
 - Protein status

Mastitis

Individual Cow SCC from a Bulk Tank Sample

On-Farm PCR Pathogen Detection

1

Load cartridge

Add milk sample to Mastatest cartidge, then replace the lid. Firmly tap cartridge to dislodge any bubbles.

Place in Lapbox

Place Mastatest cartridge into the Lapbox™, enter cow number, then start the test.

Results in 24 hours

Fully interpreted test results will be emailed to you within 24 hours.

What Lessons Can be Learned from the Technology Graveyard?

Nobody on Team that Knows Cows

Physical Form Problems

Device Integrity

Identifying, fixing, or replacing broken, misfitting, or malfunctioning devices

Cow ID issues? Right data from the right cow?

Too Much Infrastructure Needed

Plug and Play Has Different Meanings for Different People

Rodents and Other Farm Realities

Lightning Strikes Twice

Rural Connectivity Limits

Focus on Technology, Rather than Information

Some Data Interesting but Not Useful

How Much Data Do We Really Need?

Clinical or subclinical

- SCC
- Human detection of clinical signs
- Bacteria presence
- Time window

Mastitis Challenges

DYNAMICS OF CLINICAL AND SUBCLINICAL MASTITIS

POTENTIAL FOR OVERTREATMENT

EMPLOYEE EDUCATION

WHAT ACTION TO TAKE?

Mastitis Challenges

CALIBRATION ACROSS TIME

AUTOMATIC DIVERSION OR ALERT

PATHOGEN DIFFERENCES

FARM DIFFERENCES

"An ounce of prevention is worth a pound of cure."

Are we focused too heavily on disease detection?

Are we measuring the targets we intend to?

$X \neq X$ and $Y \neq Y$

Jones et al., 2020

Disappearing Data

• 138 cows

- DIM 1 to 21
- 2898 cow days
- 7 technologies

How good are we at finding events of interest?

The Full Story

[†] *P* < 0.1, * *P* < 0.05, ** *P* < 0.01, *** *P* < 0.001

Technology	Disease	
	Detection	False Positive
	Nate (70)	Rate (%)
System 1	80	15
System 2	80	19
System 3	70	23
System 4	78	18
System 5	76	20
System 6	46	12
System 7	60	15

Tsai et al. 2020
Data Silos

Too Costly to Justify Investment

Economic Considerations

- Initial investment
- Ongoing, variable costs
- Only reducing, not eliminating case cost
- Compare detection versus prevention investment
- Consider cost of intervention
- Intervention success likelihood
- Is the information used or ignored?

PERFECTION IS THE ENEMY OF PROGRESS

-- Winston Churchill

Never Lose Sight Of the Cow

Jeffrey Bewley, PhD, PAS jbewley@holstein.com 1-859-699-2998

WKU SmartHolstein Lab

www.smartholstein.com

